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1 Orbits in a Central Force Field

If the acting force is everywhere directed to or away from a central point the force is called a central
force. The central point is chosen as the zero point of the coordinate frame, and we have r⃗ ∥ a⃗ or

r⃗ × a⃗ = 0⃗ (1)

Orbits in the field of a central force lie in a plane. The force acts always in the plane given by the
origin and the initial vectors r⃗(t0) and v⃗(t0) .

For any movement in the field of a central force we have

r⃗ × v⃗ = w⃗ = konstant (2)

Using (1) it is easy to show that the derivative of w⃗ with respect to time is zero.

w⃗ is normal to the orbital plane. w⃗ and w = |w⃗ | are important invariants of the orbital motion.

r⃗ × (m · v⃗) = m · (r⃗ × v⃗) = m · w⃗ is the angular momentum of the orbiting mass. In a central force
field angular momentum is conserved.
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2 The Area sweapt out by the Position Vector

v⃗ · ∆t

r⃗

∆A

O

∆A = 1
2 · |r⃗ × v⃗ · ∆t | =

= 1
2 · ∆t · |r⃗ × v⃗ | =

1
2 · ∆t · w

According to (2) we have in any central force field

dA

dt
=
1

2
· w = c = constant (3)

Constant c is only introduced for better comparison with other scripts. (3) is the essence of
Kepler’s Second Law.

Trajectories in a plane can be expressed in polar coordinates:

∆φ

r⃗
O

∆b ∆A = 1
2 · r · ∆b =

1
2 · r · r · ∆φ

For all planar trajectories we have without any further premise

dA

dφ
=
1

2
· r2 (4)

From (3) and (4) we get using the chain rule

dφ

dt
=
w

r2
and

dt

dφ
=
r2

w
(5)

Proof: The chain rule states

dA

dt
=
dA

dφ
·
dφ

dt

and hence

1

2
· w =

1

2
· r2 ·

dφ

dt
and

w

r2
=
dφ

dt
2
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3 Newton’s Law of Gravitation

Following Newton we assume the central force to by spherically symmetric, and the absolute value
of the force should be proportional to 1

r2
:

a⃗ =
dv⃗

dt
=
k

r2
·
−r⃗
r

(6)

If a small mass m moves in the gravitational field of a huge mass M we have

k = G ·M (7)

G denoting Newton’s gravitational constant.

In a spherically symmetric central force field not only angular momentum but also energy is con-
served. We will need this fact in section 8.
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4 The Hodograph lies on a Circle

According to (6) we have

dv⃗

dt
=
k

r2
·
−r⃗
r
=
k

r2
·
(
− cosφ
− sinφ

)

Using the chain rule and (5) we get

dv⃗

dφ
=
dv⃗

dt
·
dt

dφ
=
k

r2
·
(
− cosφ
− sinφ

)
·
r2

w
=
k

w
·
(
− cosφ
− sinφ

)
(8)

Integration with respect to φ gives us the hodograph of the movement:

v⃗(φ) =

(
h1
h2

)
+
k

w
·
(
− sinφ
cosφ

)
Constant h1 is set to zero if we choose the coordinate frame so that r⃗ points to the perihelion of
the trajectory for φ = 0 . r⃗ reaches its minimal value only if v⃗ is orthogonal to r⃗ . Then we can
write

v⃗(φ) =

(
0

h

)
+
k

w
·
(
− sinφ
cosφ

)
(9)

(9) is the equation of a circle with center point H = (0/h) and radius ρ where

ρ =
k

w
(10)

The constant of integration h will be calculated in section 7 and 8.

The ideas of the sections 4 and 5 originate from the following beautyful publication of Erich Ch.
Wittmann:

“Von den Hüllkurvenkonstruktionen der Kegelschnitte zu den Planetenbahnen"
Mathematische Semesterberichte (2015) 62: 17-35, Springer Verlag 2015
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5 Orbits in the Field of a Central Mass are Conic Sections

We get another equation for v⃗ caculating the derivative of

r⃗ = r ·
(
cosφ

sinφ

)
with respect to time using (5) and the chain rule:

v⃗ =
dr⃗

dt
=
dr⃗

dφ
·
dφ

dt
=
w

r2
·
d

dφ

(
r ·

(
cosφ

sinφ

))
=
w

r2
·
(
dr

dφ
·
(
cosφ

sinφ

)
+ r ·

(
− sinφ
cosφ

))
(11)

(9) and (11) both give a representation of v⃗(φ). For the components of v⃗(φ) we get

I 0 +
k

w
· (− sinφ) =

w

r2
·
dr

dφ
· cosφ+

w

r
· (− sinφ)

II h +
k

w
· cosφ =

w

r2
·
dr

dφ
· sinφ+

w

r
· cosφ

Multiplying I by (− sinφ) and II by cosφ and summation of the new equations yields

h · cosφ+
k

w
=
w

r

and, multiplying by r · w/k

r ·
(
h · w
k
· cosφ+ 1

)
=
w2

k
(12)

Defining

p =
w2

k
(13)

and

ε =
h · w
k

(14)

we get from (12) the equation of a conic section in polar coordinates:

r =
p

1 + ε · cosφ (15)

The orbits of the planets are ellipses with the sun in one of their focal points.
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6 On the Proportions of the semi-major Axes and the Periods

In order to derive Kepler’s third law we integrate (3) over a complete period T :

c · T = π · a · b

Squared

c2 · T 2 = π2 · a2 · b2

Using b2 = a · p, (13) and w2 = 4 · c2 we get

a3

T 2
=
c2

p · π2 =
c2 · k
4 · c2 · π2 =

k

4 · π2 =
G ·M
4 · π2 (16)

The quotient a3/T 2 takes the same value for all planets. We have got Kepler’s third law.

Now, Newton’s third law states that all forces between bodies are interactions, abbreviated oftly
by actio = reactio. The sun has to move around the common center of mass of M und m , too.
This leeds to a small correction of (16). The exact version of Kepler’s third law within Newton’s
theory of gravitation is given by

a3

T 2
=
G · (M +m)
4 · π2 (17)

(17) is symmetric as M and m are concerned. In order to calculate the masses of the components
of a binary star you have to use (17). The formula is derived in Kepler_01.pdf. Within our solar
system (17) is a very small refinement of (16).

All the papers Kepler_xy.pdf are offered for download at

www.physastromath.ch/material/mathematik/keplernewton/
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7 Excentricity, total Energy and the Center of the Hodograph

With (10) and (13) we have for the radius of the hodograph

ρ =
k

w
=
G ·M
w

=
w

p
(18)

From (14) we get for the constant of integration h

h = ε ·
k

w
= ε · ρ (19)

So we have

Orbit Ellipse Parabola Hyperbola

Excenticity ε < 1 ε = 1 ε > 1

total Energy Etot < 0 Etot = 0 Etot > 0

ρ and h h < ρ h = ρ h > ρ

ρ and vp vp < 2 · ρ vp = 2 · ρ vp > 2 · ρ
Position of O in the hodograph on the hodograph outside of the hodograph

Let’s draw the hodographs in all three cases. v⃗p =
#    »

OP is the velocity of m in the perihelion, that
is the maximum velocty of m.

For ε < 1 the center O is within the hodograph:

vy

P

#»vp

H = (0/h)

#»v (φ)

O vx

φ

b

b

b

8



For ε > 1 the center O is exterior to the circle of the hodograph:

vy

P

#»vp

H = (0/h)

#»v (φ)

O vx

φ

b

b

b Ab
bB

ρ
b

α

b

The tips of the velocity vectors all lie
on the arc APB. A and B are reached at
distance r =∞ from the sun only.

Let’s prove the following small proposition:

A and B are points of the Thales circle with
diameter OH.

Proof: φmax is reached at r =∞. Then we have according to (15)

1 + ε · cosφmax = 0

rearranged

1

ε
= − cosφmax

or

ρ

h
= − cosφmax = cos(180

◦ − φmax)

This holds if and only if A and B are points of the Thales circle with diameter OH:

cos(180◦ − φmax) = cosα =
BH

OH
=
ρ

h
2
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For ε = 1 the hodograph looks as follows:

vy

P

#»vp

H = (0/h)

ρ = h

#»v (φ)

O vx

φ

b

b

b

All points of the circle are covered but O. Associated to O is the distance r = ∞ from the sun.
| #    »

OP | = 2 · ρ is the maximum velocity in the perihelion.
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8 Calculating the Orbital Elements from #»r (t0) and #»v (t0)

Let #»r and #»v be known for any specific moment. Then we get from (2) the constants w and
c = 1

2 · w .

The central mass M gives us k = G ·M . With (10) we get the radius ρ of the hodograph, and
from (13) we know the semi-latus rectum p of the orbit.

Now we use once more Newton’s law of gravitation. The gravitational field of M is “conservativ",
total energy is conserved:

1

2
·ZZm · v2 − G ·M ·ZZm ·

1

r
= E tot = −G ·M ·ZZm ·

1

2 · a (20)

or

v2 −
2 · k
r
= −
k

a
(21)

2 · a is the radius of the “cercle directeur" (in German: “Leitkreis") of the conic section (15). In
case of an ellipse a is the semi-major axis of the ellipse! You find more on this in Kepler_09.pdf !

Solving (21) with respect to a we get

a =
k · r

2 · k − v2 · r (22)

The values of ε and h are still missing. (19) tells us that knowing ε means knowing h too. With
p = a · (1− ε2) and (13) we get from (22)

ε2 = 1−
p

a
= 1−

2 · w2

k · r +
v2 · w2

k2
(23)

(23) determines ε and h = ε · ρ .

(20) to (23) are equally valid for hyperbolas, with a having a negative sign. For parabolas a gets
the value infinity from (20). However, for parabolas we always have ε = 1 !

Using (10) and (13) we can rewrite (23) as follows:

ε2 = 1− 2 ·
p

r
+
v2

ρ2
(24)

(24) shows clearly that ε is a pure number. p and r both are lengths, v and ρ both are velocities.
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